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Inviscid Finite-Volume Lambda Formulation

Francesco Casalini* and Andrea Dadonet
Politecnico di Bari, Bari 70125, Italy

A finite-volume lambda formulation for solving Euler equations and able to handle compressible as well as
transonic flow computations is presented. The easy extension of the methodology to the solution of Navier-Stokes
equations is indicated. The integration scheme is in nonconservative form in smooth flow regions in order to
take advantage of its superior accuracy and computational efficiency. It automatically switches to conservative
form in shock regions, in order to capture them correctly. Computations of two- and three-dimensional shockless
source flows prove the superior accuracy and computational efficiency of the proposed technique in comparison
with a classical conservative upwind methodology. Moreover, computed results referring to some two- and
three-dimensional test cases are compared with numerical or experimental published ones, thus showing the
capabilities of the proposed formulation to deal with inviscid subsonic as well as transonic flow cases.

Nomenclature
a = speed of sound
Cp = pressure coefficient
e, h° = total energy and total enthalpy per unit

mass
et = right eigenvectors
F, F — flux vectors at a cell face
/, g, h = inviscid flux vectors
Lt> iy, iz = unit vectors in the x, y, z directions
~kx,ky,kz = direction cosines to the cell face normal
lxily*lz = direction cosines of the first vector tangent

to the cell face
mx, my, mz = direction cosines of the second vector

tangent to the cell face
n = unit vector normal to the cell face
p, pa - local and outlet (atmospheric) static

pressure
pt, pT — local and tank total pressure
q = vector of conserved variables
q = average of vector q in a finite volume
r = radial distance from the origin
T = transformation matrix
u,v,w = components of the velocity vector in the x,

y, z directions
u = velocity component normal to the cell face
v, w = velocity components parallel to a set of

arbitrarily defined tangent vectors in the
plane of the cell face

vr = radial velocity component
x,y,z = Cartesian coordinates
AS = surface area
Ay = volume of the considered finite volume
8 = difference operator, i.e., difference of some

property between two cell faces
characterized by the same generalized
coordinate

A, = eigenvalues
£> T? j £ = generalized coordinates
p = density
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Subscripts
t

Superscript

partial derivative with respect to time
partial derivative with respect to coordinates
x,y, z

average value to be evaluated at the cell
center

Introduction

T HIS article is concerned with the numerical simulation
of inviscid flows and aims to improve and refurbish the

classical lambda formulation.1 Such an approach presents sev-
eral, very desirable features: coding simplicity, solution ac-
curacy, and low computing time per integration step. Owing
to its inherently nonconservative framework, the lambda for-
mulation requires special shock wave treatments which can
be classified into two fundamentally different procedures:

1) The shock-fitting technique2: shock waves are computed
by means of an explicit enforcement of Rankine-Hugoniot
conditions at the shock front. In spite of its theoretical skill-
fulness and many interesting results obtained for two- and
three-dimensional steady as well as unsteady flows,3"6 such
a technique has not been extended to complex geometries,
although this extension is feasible in principle.

2) The hybrid formulations7"9: shock waves are captured
by the three different types of suggested hybrid formulations,
either by inserting appropriate correction terms into the clas-
sical lambda formulation in order to restore a correct coupling
between the supersonic flow region and the shocked subsonic
one, or by switching from the classical lambda formulation to
a flux difference or a flux vector splitting methodology in the
shock transition region. These techniques are hybrid because
they take use of different dependent variables in different
regions of the flows.

Finally, it must be pointed out that the classical as well as
the outlined hybrid lambda formulations are apt to finite-
difference approximations, while finite-volume discretizations
seem to be much more attractive when flows in complex ge-
ometries must be computed.

On the other hand, as found by Godunov,10 upwind con-
servative methodologies automatically capture monotonic
shocks if the employed numerical scheme is limited to a first-
order space accuracy, which is generally unsatisfactory if used
to compute the entire flowfield. In order to obtain monotonic
and higher order space accurate results, the employed nu-
merical scheme must self adapt to the solution it generates, so
that the automatic shock-capturing property is lost. More-
over, captured shocks are represented by a smooth transition
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over some meshes so that, in order to reduce the "numerical
shock thickness," a local mesh refinement is sometimes em-
ployed, which again causes the automatic shock-capturing ca-
pability to be lost. Finally, such methodologies handle some
boundary conditions in a more difficult way, require a higher
computational time with respect to the classical lambda for-
mulation, and present a lower accuracy.

We may conclude that the conservative property is needed
only to capture discontinuities, while nonconservative forms
of the equations can be much more attractive in smooth re-
gions, because of their advantages: higher computational ef-
ficiency, better accuracy, and simpler boundary conditions
enforcement. Such a switching between conservative and non-
conservative forms requires a shock detection device, which
is needed by the shock-capturing conservative methodologies
too, as above outlined. Accordingly, it seems a worthwhile
attempt to refurbish the lambda formulation by developing
an improved version apt to transonic flow computations in
complex geometries, without being supplemented by a dis-
continuity fitting technique, and satisfying the following re-
quirements: 1) equations discretized in nonconservative form
in smooth flow regions; 2) conservative property automati-
cally recovered near discontinuities; 3) use of the same de-
pendent variables everywhere in the flowfield; 4) finite-vol-
ume formulation; and 5) preservation of the superior accuracy
of the classical lambda formulation. Moreover, it seems ad-
visable that the new formulation be in a form suitable for an
easy extension to compute Navier-Stokes equations.

Reference 11 can be considered a first step in this direction:
a one-dimensional version of an improved lambda formula-
tion satisfying the previously outlined features has been sug-
gested and tested vs steady as well as unsteady one-dimen-
sional flows, proving the improved version to be characterized
by a slightly superior accuracy with respect to the classical
one. A multidimensional version has then been suggested in
Ref. 12: the formulation and the computed results, referring
to two- and three-dimensional source flows, are essentially
limited to Cartesian meshes. The main objective of the paper
was to prove the feasibility and simplicity of the conservative-
nonconservative switching, for curved shocks, together with
the superior accuracy of the improved lambda formulation in
comparison with a flux difference splitting methodology.

This article first presents the finite-volume lambda formu-
lation with reference to a general three-dimensional curvi-
linear coordinate system. Computed results referring to two- and
three-dimensional shockless source flows are then presented,
in order to prove the superior accuracy and computational
efficiency of the proposed technique in comparison with a
classical conservative upwind methodology. Finally, com-
puted results pertaining to some two- and three-dimensional
test cases are compared with numerical or experimental pub-
lished ones, thus showing the capability of the proposed for-
mulation to deal with inviscid subsonic as well as transonic
flow cases. The formulation and most of the results here pre-
sented have been already reported in Ref. 13.

Governing Equations and Numerical Technique
The vector form of the Euler equations in a Cartesian co-

ordinate system can be written as14

The vector of conserved variables and the inviscid flux vec-
tors are given by

q = [p, pu, pv, pw, pe]T (2)

/ = [pu, p + pu2, puv, puw, puh°]T

g = [pv, puv, p + pv2, pvw, pvh°]T (3)

h = [pw, puw, pvw, p + pw2, pwh°]T

The extension of Eq. (1) to the Navier-Stokes equations
can be easily obtained by subtracting the heat conduction and
shear stress contributions from the corresponding flux vectors
associated with the Euler equations.

Each unitary volume in the computational space corre-
sponds to a finite volume with six faces in the physical space,
each couple of faces being characterized by one of the three
curvilinear lines corresponding to the coordinate lines in the
computational space. With reference to such a volume, a
semidiscrete finite-volume representation of Eq. (1) leads to

= 0

where

= (fix + giy

(4)

(5)

It must be noticed that the summation implied in Eq. (4) must
be extended to the three curvilinear directions corresponding
to the coordinate system in the computational space.

According to Eq. (5), the fluxes at each face are given by

F = [pu, kxp + puu, kyp + pvu, kzp + pwu, ph°u]T (6)

being

u = kxu + kyv + kzw (7)

Such fluxes premultiplied by an appropriate matrix T, give

F = TF = [pu, p + pw2, pvu, pwu, ph°u]T (8)

where

1 0 0 0 0
0 kx ky kz 0

T = Q lx ly lz 0
0 mx my mz 0
0 0 0 0 1

1 0 0 0 0
0 kx lx mx 0
0 ky ly my 0
0 kz lz mz 0
0 0 0 0 1 .

V = 1XU + I V + 1ZW

w — mxu + mvv + mzw

(9)

(10)

(11)

(12)

Taking into account Eq. (8), Eq. (4) can be expressed as

or

= 0 (14)

In Eq. (14), the contributions due to the flux variations are
separated by those related to the geometry variations.

Flux difference splitting techniques give useful expression
to relate the flux differences between the two sides of an
interface (approximate solution of the corresponding Rie-
mann problem). The same expressions can be here used to
evaluate the difference of the fluxes between two faces char-
acterized by the same curvilinear line, corresponding to one
of the coordinate lines in the computational space. Flux dif-
ference splitting techniques solve the one-dimensional Rie-
mann problem at the interface, while, at this stage, the present
technique solves a one-dimensional Riemann problem be-
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tween each couple of corresponding faces. Accordingly such
a flux difference can be written as

8F =

where

«! = (8p + pa8u)/2a2' a2 = (dp - pa8u)/2a2

(15)

(16)

u

h°

1
+ a
V
w
+ au

1
u — a

V

w
h° - au

0
0
1
0
V

0
0
0
1
w

1
u
V

w
q2/2

a3 = p8v; a4 = pSvv; a5 = 8p — 8p/a2

A! = u + 0; A2 = u — a; A3 = A4 = A5 = u (17)

q2 = u2 + v2 + w2 (18)

and the right eigenvectors e, are represented by the columns
of the following matrix:

(19)

At this stage the lambda formulation approximation is used:
all the finite-differences in Eq. (16) are approximated by one-
side differences taken between the mesh point at the center
of the considered finite volume and the upstream mesh points,
if the corresponding A, is positive, or the downstream mesh
points, if the corresponding Af is negative. As an example, if
8F represents a flux variation in the f direction and A, is
positive, 8v will be taken between the point [nAf, raAr/, 1A£],
at the center of the considered finite volume, and the points
[(n - 1)A£ mAij, 1A£] and [(n - 2)A£ mArj, lAf], if a
second-order spatial approximation is required. Moreover,
the geometry variation terms in Eq. (14) are evaluated at the
beginning of the computations by means of central differ-
ences.

As far as the inlet and outlet boundary conditions are con-
cerned, the spirit of the classical lambda formulation has been
preserved.3 On the contrary, the impermeability condition at
the solid wall has been enforced by means of the symmetry
technique proposed and tested in Ref. 15.

The extension of the present procedure to the computation
of the Navier-Stokes equations requires the consideration of
additional terms, corresponding to the heat flux and shear
stress contributions, which can be computed in a strict finite-
volume fashion in the same way they are treated by classical
conservative finite-volume methodologies.

Shock Computation
The insertion of the lambda formulation approximation in

the computation of the finite-differences in Eq. (16), together
with the separation of the contributions due to fluxes and
geometry variations in Eq. (14), gives a nonconservative dis-
cretization of Eq. (4), which is appropriate to compute smooth
flow regions with a high accuracy. As a counterpart, no dis-
continuity can be captured by the present formulation, be-
cause of the loss of the conservation property.

Such a property can be easily recovered near discontinui-
ties, following the basic idea suggested in Ref. 9, which has
been adapted to the present situation and put to work in Ref.
12. Practically, it brings us to switch from the previously out-
lined nonconservative discretization, in smooth flow regions,
to a conservative formulation and scheme near discontinui-
ties, where the flux difference splitting technique suggested
by.Roe16 has been used. The flux limiters, employed by up-
wind conservative schemes, can be used to detect such dis-
continuities and to trigger the conservative-nonconservative
change. Indeed, the authors have experienced efficient dis-
continuity detections by employing the well known minmod

limiter.14 Alternatively, the discontinuities detection tech-
niques suggested by Moretti2'3 can be used: these are essen-
tially based on finding discontinuities in eigenvalues. Which-
ever kind of detection device is used, an automatic switch
between nonconservative and conservative discretization
schemes can be easily obtained, so that all the requirements
stated in the introduction are finally satisfied with the excep-
tion of the classical lambda formulation accuracy preserva-
tion, which will be checked by means of some numerical ex-
periments.

At this stage we may observe the present formulation is
suitable for a discontinuity fitting procedure too, when it is
required. In such a case a discontinuity tracking procedure
must be worked out following the guidelines given in Refs.
2-6.

Results
One-dimensional cylindrical and spherical source flows have

been analyzed in Ref. 12 and computed by means of Cartesian
meshes, in order to obtain simple two- and three-dimensional
flows with an exact solution, for comparison of the results.
In particular, shockless subsonic and supersonic flows have
been computed by means of the present formulation as well
as Roe's flux difference splitting methodology. The corre-
sponding mean square errors with respect to the exact solution
have been evaluated. A comparison of such errors, reported
in Ref. 13, outlines that the proposed formulation accuracy
is superior to Roe's scheme accuracy by a factor ranging be-
tween 2.5-5. As far as the computational time is concerned,
the present formulation is about two times faster than Roe's
scheme, when the same number of mesh intervals are used.
Taking into account that doubling the number of mesh in-
tervals in each direction requires halving the time step, we
may conclude that the use of Roe's scheme implies a com-
putational time about 30 times longer, in order to compute
three-dimensional subsonic or supersonic source flow results
with the same level of accuracy. Although such a conclusion
is limited to the considered test cases, one can reasonably
state the present formulation requires computational times
one order of magnitude lower than the ones needed by Roe's
scheme, if the same global accuracy is wanted. The above
outlined results prove the superior accuracy and computa-
tional efficiency of the proposed formulation with respect to
a flux difference splitting technique.

In order to prove that the present technique and the clas-
sical lambda formulation are characterized by a comparable
accuracy, the two-dimensional subsonic flow inside a plane
channel with a circular bump has been considered: the ratio
of the channel width to the circular arc chord is equal to 1,
while the ratio of the circular arc height to such a chord is
equal to 0.1. The mesh employed in the present computation
is made by 33 x 10 cells. A high Mach number subsonic flow
case, corresponding to a downstream isentropic Mach number
equal to 0.52, has been considered. The computed pressure
coefficient distribution on the bump surface is plotted in Fig.
1 (symbols), together with the corresponding results (contin-
uous line) obtained by means of a code developed according
to the classical lambda formulation.4 Moreover, the computed
isobar pattern is reported in Fig. 2. The results shown in Figs.
1 and 2 outline a very good symmetry between the inlet and
the outlet flow regions, as it should be, because of the geo-
metrical symmetry and the subsonic nature of the flow. More-
over, in spite of the coarse grid employed, Fig. 1 shows a very
good agreement between the results computed by means of
the suggested technique and the classical lambda formulation.
In the present flow case, no exact solution exists, so that a
deeper accuracy analysis can only evaluate the total pressure
and total temperature errors and the symmetry errors between
the inlet and outlet regions, i.e., the differences between the
values of physical variables at two points symmetrically lo-
cated with respect to the vertical symmetry line. Such an error
analysis has been performed in Ref. 13 and has proven the
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Fig. 1 Bump channel subsonic flow: pressure coefficient on the bump
surface (continuous line: reference results from Ref. 4; dark circles:
present results).

Fig. 2 Bump channel subsonic flow: isobar contours.

slightly superior accuracy of the finite-volume lambda for-
mulation in comparison with the classical lambda formulation.

The second considered two-dimensional flow case is the
shockless transonic flow inside the Hobson Cascade I,17 a
symmetric cascade characterized by an exact hodograph so-
lution. Such a test case is very severe because the flow solution
is singular in the sense that small perturbations in incident
Mach number and angle can lead to flow patterns with shocks.
The flow main characteristics are an inlet and outlet critical
Mach number equal to 0.51 and inlet and outlet angles equal
to 43°.544 and -43°.544, respectively. Computations have
been performed by means of two different nonorthogonal
meshes, made by 28 x 10 and 46 x 19 cells, 11 and 21 cells
being located on the cascade suction side, respectively. Figure
3 presents the exact critical Mach number on the cascade
surface (continuous line) together with the computed solu-
tions (dark circles and light squares refer to the finer and
coarser mesh, respectively), while Fig. 4 shows the computed
isoMach contours. Figure 3 shows a good agreement between
the computed and exact results, for the coarser mesh solution
too. It also proves that the computed results lead to the exact
ones when the mesh is refined. Moreover, Fig. 4 demonstrates
the good symmetry of computed results. The reliability and
robustness of the suggested methodology have also been proven
by the following numerical experiments. The flow inside the
Hobson cascade has been computed by means of different
mesh patterns and sizes: slightly different mesh dependent
solutions have been obtained, but none of them has led to
flow patterns with shocks.

Two subsonic three-dimensional test cases have then been
considered. The first one is the flow inside an accelerating
rectangular elbow, designed by Stanitz18 and originally intro-
duced to test some aspects of secondary flow development in
a turbine vane, i.e., the passage vortex formation and inten-
sification in a contracting curved duct.19 Some very accurate
experimental results have been recently reported in Ref. 20.
The configuration, shown in Fig. 5, has been experimentally
tested with a thickened end wall boundary layer, obtained by
means of an upstream spoiler. In the present computations a
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Fig. 3 Hobson cascade 1: surface critical Mach number distribution
(continuous line: exact solution; dark circles: 46 x 19 cells; light
squares:3 28 x 10 cells).

Fig. 4 Hobson cascade 1: isoMach contours.

PRESSURE SURFACE

Fig. 5 Schematic of Stanitz accelerating rectangular elbow.

quasiorthogonal grid, made by 30 x 10 x 15 cells, has been
employed to describe only one-half of the duct, because of
the flow symmetry with respect to the midspan. Figure 6,
taken from Ref. 20, presents the pressure coefficient around
the duct periphery at selected axial stations. According to
Stanitz, the pressure coefficient has been defined as

= (P - Pa)l(PT ~ Pa) (20)

In Fig. 6, suction surface results correspond to abscissa values
between zero and one, end wall results to values between one
and two, and pressure surface results to values between two
and three. The lowest value represents the axial station closest
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Fig. 6 Stanitz elbow: pressure coefficient distributions around the
duct periphery at selected axial stations from Ref. 20 (continuous lines:
computed viscous results; symbols: experimental data).
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Fig. 7 Stanitz elbow: present pressure coefficient distribution around
the duct periphery at selected axial stations (continuous lines: com-
puted results; symbols: experimental data).

to the inlet plane, while the highest value refers to the station
closest to the outlet plane. The experimental data, corre-
sponding to a nominal mainstream exit Mach number equal
to 0.45, are given as symbols, while the continuous lines refer
to the results computed in Ref. 20 by means of a viscous code.
Figure 7 presents the corresponding results computed in ac-
cordance with the present formulation. The agreement be-
tween theoretical and experimental results in Fig. 6 is as good
as in Fig. 7, thus outlining that the present formulation can
compute wall static pressure as accurately as a viscous for-
mulation, at least as the one suggested in Ref. 20.

In Ref. 20, experimental total pressure contours at the el-
bow exit plane are also given. Such experimental results are
shown in Fig. 8 as contours of constant total pressure loss
(AP,) defined as

, = (pT - pt)/(pT - Pa) (21)

The corresponding contours, computed by means of the
present formulation, are plotted in Fig. 9. The present results
give the main feature of the experimental total pressure loss
contours and compare with them much better than other pub-
lished inviscid results. However, some discrepancies between
computed and experimental results can be found: the bound-

Fig. 8 Stanitz elbow: experimental exit total pressure loss contours.21

Fig. 9
tours.

Stanitz elbow: present numerical exit total pressure loss con-

ary layer on the pressure surface cannot be computed, the
midspan results to be a no-loss surface. These discrepancies
are characteristic of any accurate inviscid calculation. Indeed,
in steady inviscid flows the total pressure is constant along
streamlines; being the midspan surface a stream surface char-
acterized by no total pressure loss at the inlet, no total pres-
sure loss must be computed at the outlet by any accurate
inviscid code, as it is the case in the present computation. The
boundary layer at the pressure side and the midspan losses
are typical viscous effects which cannot be reproduced by
accurate inviscid formulations.

The second considered subsonic three-dimensional flow case
is the test case E/CA-7, suggested in Ref. 21 for inviscid
calculations too. It is a cascade of turbine blades with side
walls presenting a 6°.26 divergence in the blade passage. At
the design condition here considered, this cascade has an exit
isentropic Mach number of 0.71 and an incidence angle of
38.8 deg. The computation of such a test case has been per-
formed by using only 25 x 9 x 7 cells. The computed midspan
surface isentrbpic Maeh number distribution is plotted in Fig.
10 (symbols) together with the corresponding experimental
data (continuous line), while Fig. 11 shows the midspan isobar
contours inside the cascade. Taking into account the inviscid
nature of the present formulation, the agreement between
computed and experimental results in Fig. 10 can be consid-
ered quite satisfactory, with the exception of the leading-edge
region where the present coarse mesh cannot accurately de-
scribe the stagnation point flow features. This same test case
has been considered in Ref. 22 and computed by means of
an inviscid formulation and using a much finer 80 x 16 x
16 mesh: the reported agreement between computed isen-
tropic Mach number and experimental data compares very
well with the present one (Fig. 10), in particular as refers to
the blade upper surface; moreover, the reported isobar con-
tours agree with those plotted in Fig. 11, with the obvious
exception of the leading-edge region.
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1. 0

1.0

Fig. 10 Test case E/CA-7: midspan surface isentropic Mach num-
ber distribution (continuous lines: experimental data; dark circles:
25 x 9 x 7 cells).

i. o
Fig. 12 Bump channel transonic flow: pressure coefficient distribu-
tion on the bump surface (continuous line: reference results from Ref.
24; dark circles: 63 x 24 cells; light squares: 31 x 12 cells).

Fig. 11 Test case E/CA-7: midspan isobar contours.

Finally, two transonic test cases have been considered: 1)
a two-dimensional and 2) a three-dimensional flow case. The
two-dimensional one is the classical transonic flow inside a
plane channel with a circular bump23 and characterized by a
downstream isentropic Mach number equal to 0.85. The height
to chord ratio of the circular arc is equal to 0.042 and the
ratio of the channel width to such a chord is equal to 2.073.
Computations have been performed by means of two different
nonorthogonal meshes with 31 x 12 and 63 x 24 cells. The
steady-state pressure coefficient results at the bump surface
are plotted in Fig. 12: the dark circles and the light squares
refer to the results computed by means of the finer and the
coarser mesh, respectively; the continuous line represents the
reference results given by Montagne24 and computed by using
a flux difference splitting methodology and 72 x 21 grid-
points. In spite of the completely different type of employed
methodologies, Fig. 12 outlines a very good agreement be-
tween the present results and the reference ones, in particular
as refers to the shock position. Such an agreement proves the
very good accuracy of the present results computed by means
of a very coarse mesh (only 31 x 12 cells), with some obvious
differences in the leading- and trailing-edge regions, which
do not affect the overall accuracy. Finally, the isoMach con-
tours computed by means of the coarser mesh are plotted in
Fig. 13. A comparison of such results with the corresponding
contours computed by means of the classical lambda formu-
lation supplemented by a shock-fitting technique (see Fig. 10

Fig. 13 Bump channel transonic flow: isoMach contours.

in Ref. 4) outlines the practical coincidence of the two sets
of results. Such a comparison, together with the conclusions
drawn from Fig. 12, proves the reliability of the present for-
mulation for transonic flow computations too.

In order to test the proposed methodology in three-dimen-
sional transonic flow conditions too, the following simple steady
one-dimensional spherical source flows, already suggested in
Ref. 12, have been considered:

a5vrr2 = k
0.2t;2 + a2 = 1.4

(22)

Equation (22) represents one-dimensional flows when a
spherical coordinate system is used, while they represent three-
dimensional flows if a Cartesian coordinate system is em-
ployed. In such a way, simple three-dimensional flows can be
devised which are characterized by a known exact solution,
for comparison of the computed results. In order to get a
transonic flow test case, an unshocked value of k and the
prescribed shock position must be defined, which determine
the flow conditions upstream of the shock. The downstream
flow conditions are then determined by the shocked value of
k, which can be evaluated by taking use of the Rankine-
Hugoniot conditions. We have considered the transonic flow
corresponding to an unshocked value of k equal to 1.0 and
to a prescribed shock located at r = 2.4. Such a flow case
has been computed by means of two different Cartesian meshes,
employing a maximum of 12 and 25 cells in each direction.
The channel geometry is represented in Fig. 14, while Fig.
15 presents the pressure distribution vs the radial distance
from the origin, along the main diagonal, i.e., the line AB in
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Fig. 14 Three-dimensional source flow: geometry.
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Fig. 15 Three-dimensional source flow: pressure distribution along
the main diagonal (continuous line: exact solution; dark circles: finer
mesh; light squares: coarser mesh).

Fig. 16 Three-dimensional source flow: logarithmic pressure con-
tours.

Fig. 14 (the continuous line shows the exact solution, while
the dark circles and the light squares represent the results
computed with the finer and the coarser mesh, respectively).
Moreover, Fig. 16 shows the logarithmic pressure contours
computed by means of the finer mesh and corresponding to
the x-y plane at one-fourth of the channel dimension in the
z direction. A quick glance to Figs. 15 and 16 brings us to
the following conclusions: the results computed by means of
the two meshes are sufficiently close, with the obvious ex-
ception of the shock transition region; the results computed
by means of the finer mesh agree very well with the exact
solution; the shock is correctly located; the shock position
and the computed results tend to the exact values when in-

creasing the cell number; the isobar contours are circles or
very close to circles, as they should be. Such conclusions prove
once more the reliability of the proposed methodology.

Conclusions
A finite-volume lambda formulation for the computation

of inviscid flows has been presented which satisfies the fol-
lowing requirements: the equations are discretized in non-
conservative form in smooth flow regions, in order to take
advantage of its superior accuracy; the discretization scheme
automatically switches to conservative form near disconti-
nuities, to preserve the discontinuity capturing capability of
such schemes; the same dependent variables are employed in
the whole flowfield, independently on the local form of the
discretization scheme; the formulation is in finite-volume form,
in order to easily describe complex geometries. The suggested
formulation can also be easily extended to the computation
of Navier-Stokes equations, as briefly shown. Computations
of some two- and three-dimensional flow test cases have proven
the superior accuracy and computational efficiency of the pro-
posed formulation, in comparison with a classical conservative
up wind methodology. Moreover, some computations have out-
lined the suggested formulation slightly improves the superior
accuracy of the classical lambda formulation. Comparison of
computed results with exact, numerical or experimental pub-
lished ones has shown the capability of the finite-volume lambda
formulation to deal with subsonic as well as transonic flow
cases and the reliability of computed results. The present
formulation must be tested in more complex three-dimen-
sional geometries, to prove its applicability to problems of
greater engineering interest. Moreover, following the sug-
gested guidelines, viscous terms must be inserted in order to
extend the formulation applicability to the computation of
viscous flows.
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